Page images
PDF
EPUB

haemoglobin, and of a species of Limulus; in straw, hay, eggs, cheese, meat, and other food-stuffs; in the liver and kidneys, and, in traces, in the blood of man and other animals (as an entirely adventitious constituent, however); it has also been shown by A. H. Church to exist to the extent of 5.9% in turacin, the colouring-matter of the wing-feathers of the Turaco.

Native copper, sometimes termed by miners malleable or virgin copper, occurs as a mineral having all the properties of the smelted metal. It crystallizes in the cubic system, but the crystals are often flattened, elongated, rounded or otherwise distorted. Twins are common. Usually the metal is arborescent, dendritic, filiform, moss-like or laminar. Native copper is found | in most copper-mines, usually in the upper workings, where the deposit has been exposed to atmospheric influences. The metal seems to have been reduced from solutions of its salts, and deposits may be formed around mine-timber or on iron objects. It often fills cracks and fissures in the rock. It is not infrequently found in serpentine, and in basic eruptive rocks, where it occurs as veins and in amygdales. The largest known deposits are those in the Lake Superior region, near Keweenaw Point, Michigan, where masses upwards of 400 tons in weight have been discovered. The metal was formerly worked by the Indians for implements and ornaments. It occurs in a series of amygdaloidal dolerites or diabases, and in the associated sandstones and conglomerates. Native silver occurs with the copper, in some cases embedded in it, like crystals in a porphyry. The copper is also accompanied by epidote, calcite, prehnite, analcite and other zeolitic minerals. Pseudomorphs after calcite are known; and it is notable that native copper occurs pseudomorphous after aragonite at Corocoro, in Bolivia, where the copper is disseminated through sandstone.

Ores.-The principal ores of copper are the oxides cuprite and melaconite, the carbonates malachite and chessylite, the basic chloride atacamite, the silicate chrysocolla, the sulphides chalcocite, chalcopyrite, erubescite and tetrahedrite. Cuprite (q.v.) occurs in most cupriferous mines, but never by itself in large quantities. Melaconite (q.v.) was formerly largely worked in the Lake Superior region, and is abundant in some of the mines of Tennessee and the Mississippi valley. Malachite is a valuable ore containing about 56% of the metal; it is obtained in very large quantities from South Australia, Siberia and other localities. Frequently intermixed with the green malachite is the blue carbonate chessylite or azurite (q.v.), an ore containing when pure 55.16% of the metal. Atacamite (q.v.) occurs chiefly in Chile and Peru. Chrysocolla (q.v.) contains in the pure state 30% of the metal; it is an abundant ore in Chile, Wisconsin and Missouri. The sulphur compounds of copper are, however, the most valuable from the economic point of view. Chalcocite, redruthite, copper-glance (q.v.) or vitreous copper (Cu2S) contains about 80% of copper. Copper pyrites, or chalcopyrite, contains 34.6% of copper when pure; but many of the ores, such as those worked specially by wet processes on account of the presence of a large proportion of iron sulphide, contain less than 5% of copper. Cornish ores are almost entirely pyritic; and indeed it is from such ores that by far the largest proportion of copper is extracted throughout the world. In Cornwall copper lodes usually run east and west. They occur both in the "killas " or clay-slate, and in the " growan or granite. Erubescite (q.v.), bornite, or horseflesh ore is much richer in copper than the ordinary pyrites, and contains 56 or 57% of copper. Tetrahedrite (q.v.), fahlerz, or grey copper, contains from 30 to 48% of copper, with arsenic, antimony, iron and sometimes zinc, silver or mercury. Other copper minerals are percylite (PbCuCl2(OH)2), boleite (3PbCuCl2(OH)2, AgCl), stromeyerite {(Cu, Ag)2S), cubanite (CuS, Fe2S3), stannite (Cu2S, FeSnS3), tennantite (3Cu2S, As2S3), emplectite (Cu2S, Bi2S3), wolfsbergite (Cu2S, Sb2S), famatinite (3Cu2S, Sb2Ss) and enargite (3Cu2S, As2S5). For other minerals, see Compounds of Copper below. Metallurgy. Copper is obtained from its ores by three principal methods, which may be denominated—(1) the pyro-metallurgical or dry method, (2) the hydro-metallurgical or wet method, and (3) the electro-metallurgical method.

[ocr errors]

The methods of working vary according to the nature of the ores treated and local circumstances. The dry method, or ordinary smelting, cannot be profitably practised with ores containing less than 4% of copper, for which and for still poorer ores the wet process is preferred.

66

Copper Smelting.—We shall first give the general principles which underlie the methods for the dry extraction of copper, and then proceed to a more detailed discussion of the plant used. Since all sulphuretted copper ores (and these are of the most economic importance) are invariably contaminated with arsenic and antimony, it is necessary to eliminate these impurities, as far as possible, at a very early stage. This is effected by calcination or roasting. The roasted ore is then smelted to a mixture of copper and iron sulphides, known as copper "matte" or coarse-metal," which contains little or no arsenic, antimony or silica. The coarse-metal is now smelted, with coke and siliceous fluxes (in order to slag off the iron), and the product, consisting of an impure copper sulphide, is variously known as "blue-metal," when more or less iron is still present, " pimplemetal," when free copper and more or less copper oxide is present, or fine or "white-metal," which is a fairly pure copper sulphide, containing about 75% of the metal. This product is re-smelted to form “ coarse-copper," containing about 95% of the metal, which is then refined. Roasted ores may be smelted in reverberatory furnaces (English process), or in blast-furnaces (German or Swedish process). The matte is treated either in reverberatory furnaces (English process), in blast furnaces (German process), or in converters (Bessemer process). The "American process or "Pyritic smelting consists in the direct smelting of raw ores to matte in blast furnaces. The plant in which the operations are conducted varies in different countries. But though this or that process takes its name from the country in which it has been mainly developed, this does not mean that only that process is there followed.

66

[ocr errors]
[ocr errors]

The" English process "is made up of the following operations: (1) calcination; (2) smelting in reverberatory furnaces to form the matte; (3) roasting the matte; and (4) subsequent smelting in reverberatory furnaces to fine- or white-metal; (5) treating the fine-metal in reverberatory furnaces to coarse- or blistercopper, either with or without previous calcination; (6) refining of the coarse-copper. A shorter process (the so-called "direct process ") converts the fine-metal into refined copper directly. The Welsh process closely resembles the English method; the main difference consists in the enrichment of the matte by smelting with the rich copper-bearing slags obtained in subsequent operations. The "German or Swedish process " is characterized by the introduction of blast-furnaces. It is made up of the following operations: (1) calcination, (2) smelting in blast-furnaces to form the matte, (3) roasting the matte, (4) smelting in blast-furnaces with coke and fluxes to "black-" or coarse-metal," (5) refining the coarse-metal. The " AngloGerman Process" is a combination of the two preceding, and consists in smelting the calcined ores in shaft furnaces, concentrating the matte in reverberatory furnaces, and smelting to coarse-metal in either.

66

The impurities contained in coarse-copper are mainly iron, lead, zinc, cobalt, nickel, bismuth, arsenic, antimony, sulphur, selenium and tellurium. These can be eliminated by an oxidizing fusion, and slagging or volatilizing the products resulting from this operation, or by electrolysis (see below). In the process of oxidation, a certain amount of cuprous oxide is always formed, which melts in with the copper and diminishes its softness and tenacity. It is, therefore, necessary to reconvert the oxide into the metal. This is effected by stirring the molten metal with a pole of green wood ("poling "); the products which arise from the combustion and distillation of the wood reduce the oxide to metal, and if the operation be properly conducted "tough-pitch " copper, soft, malleable and exhibiting a lustrous silky fracture, is obtained. The surface of the molten metal is protected from oxidation by a layer of anthracite or charcoal. "Bean-shot" copper is obtained by throwing the molten metal into hot water; if cold water be used, "feathered-shot" copper is formed.

[ocr errors]

one hearth, others three. This and the previous type of furnace, owing to their large capacity, are at present in greatest favour. The M'Dougall-Herreshoff, working on ores of over 30% of sulphur, requires no fuel; but in furnaces of the reverberatory type fuel must be used, as an excess of air enters through the slotted sides and the hinged doors which open and shut frequently to permit of the passage of the rakes. The consumption of fuel, however, does not exceed 1 of coal to 10 of ore. The quantity of ore which these large furnaces, with a hearth area as great as 2000 ft. and over, will roast varies from 40 to 60 tons a day. Shaft calcining furnaces like the Gerstenhoffer, Hasenclever, and others designed for burning pyrites fines have not found favour in modern copper works.

"Rosette copper is obtained as thin plates of a characteristic | these furnaces are straight, others circular. Some have only dark-red colour, by pouring water upon the surface of the molten metal, and removing the crust formed. "Japan" copper is purple-red in colour, and is formed by casting into ingots, weighing from six ounces to a pound, and rapidly cooling by immersion in water. The colour of these two varieties is due to a layer of oxide. "Tile " copper is an impure copper, and is obtained by refining the first tappings. "Best-selected" copper copper is a purer variety. Calcination or Roasting and Calcining Furnaces.-The roasting should be conducted so as to eliminate as much of the arsenic and antimony as possible, and to leave just enough sulphur as is necessary to combine with all the copper present when the calcined ore is smelted. The process is effected either in heaps, stalls, shaft furnaces, reverberatory furnaces or muffle furnaces. Stall and heap roasting require considerable time, and can only be economically employed when the loss of the sulphur is of no consequence; they also occupy much space, but they have the advantage of requiring little fuel and handling. Shaft furnaces are in use for ores rich in sulphur, and where it is desirable to convert the waste gases into sulphuric acid. Reverberatory roasting does not admit of the utilization of the waste gases, and requires fine ores and much labour and fuel; it has, however, the advantage of being rapid. Muffle furnaces are suitable for fine ores which are liable to decrepitate or sinter. They involve high cost in fuel and labour, but permit the utilization of the waste gases.

66

Reverberatory furnaces of three types are employed in calcining copper ores: (1) fixed furnaces, with either hand or mechanical rabbling; (2) furnaces with movable beds; (3) furnaces with rotating working chambers. Hand rabbling in fixed furnaces has been largely superseded by mechanical rabbling. Of mechanically rabbling furnaces we may mention the O'Harra modified by Allen-Brown, the Hixon, the KellerGaylord-Cole, the Ropp, the Spence, the Wethey, the Parkes, Pearce's "Turret " and Brown's Horseshoe furnaces. Blake's and Brunton's furnaces are reverberatory furnaces with a movable bed. Furnaces with rotating working chambers admit of continuous working; the fuel and labour costs are both low. In the White-Howell revolving furnace with lifters-a modification of the Oxland-the ore is fed and discharged in a continuous stream. The Brückner cylinder resembles the Elliot and Russell black ash furnace; its cylinder tapers slightly towards each end, and is generally 18 ft. long by 8 ft. 6 in. in its greatest diameter. Its charge of from 8 to 12 tons of ore or concentrates is slowly agitated at a rate of three revolutions a minute, and in from 24 to 36 hours it is reduced from say 40 or 35% to 7% of sulphur. The ore is under better control than is possible with the continuous feed and discharge, and when sufficiently roasted can be passed red-hot to the reverberatory furnace. These advantages compensate for the wear and tear and the cost of moving the heavy dead-weight.

Shaft calcining furnaces are available for fine ores and permit the recovery of the sulphur. They are square, oblong or circular in section, and the interior is fitted with horizontal or inclined plates or prisms, which regulate the fall of the ore. In the Gerstenhoffer and Hasenclever-Helbig furnaces the fall is retarded by prisms and inclined plates. In other furnaces the ore rests on a series of horizontal plates, and either remains on the same plate throughout the operation (Ollivier and Perret furnace), or is passed from plate to plate by hand (Malétra), or by mechanical means (Spence and M'Dougall).

The M'Dougall furnace is turret-shaped, and consists of a series of circular hearths, on which the ore is agitated by rakes attached to revolving arms and made to fall from hearth to hearth. It has been modified by Herreshoff, who uses a large hollow revolving central shaft cooled by a current of air. The shaft is provided with sockets, into which movable arms with their rakes are readily dropped. The Peter Spence type of calcining furnace has been followed in a large number of inventions. In some the rakes are attached to rigid frames, with a reciprocating motion, in others to cross-bars moved by revolving chains. Some of

The Fusion of Ores in Reverberatory and Cupola Furnaces.-After the ore has been partially calcined, it is smelted to extract its earthy matter and to concentrate the copper with part of its iron and sulphur into a matte. In reverberatory furnaces it is smelted by fuel in a fireplace, separate from the ore, and in cupolas the fuel, generally coke, is in direct contact with the ore. When Swansea was the centre of the copper-smelting industry in Europe, many varieties of ores from different mines were smelted in the same furnaces, and the Welsh reverberatory furnaces were used. To-day more than eight-tenths of the copper ores of the world are reduced to impure copper bars or to fine copper at the mines; and where the character of the ore permits, the cupola furnace is found more economical in both fuel and labour than the reverberatory.

The Welsh method finds adherents only in Wales and Chile. In America the usual method is to roast ores or concentrates so that the matte yielded by either the reverberatory or cupola furnace will run from 45 to 50% in copper, and then to transfer to the Bessemer converter, which blows it up to 99%. In Butte, Montana, reverberatories have in the past been preferred to cupola furnaces, as the charge has consisted mainly of fine roasted concentrates; but the cupola is gaining ground there. At the Boston and Great Falls (Montana) works tilting reverberatories, modelled after open hearth steel furnaces, were first erected; but they were found to possess objectionable features. Now both these and the egg-shaped reverberatories are being abandoned for furnaces as long as 43 ft. 6 in. from bridge to bridge and of a width of 15 ft. 9 in. heated by gas, with regenerative checker work at each end, and fed with ore or concentrates, red-hot from the calciners, through a line of hoppers suspended above the roof. Furnaces of this size smelt 200 tons of charge a day. But even when the old type of reverberatory is preferred, as at the Argo works, at Denver, where rich goldand silver-bearing copper matte is made, the growth of the furnace in size has been steady. Richard Pearce's reverberatories in 1878 had an area of hearth of 15 ft. by 9 ft. 8 in., and smelted 12 tons of cold charge daily, with a consumption of 1 ton of coal to 2-4 tons of ore. In 1900 the furnaces were 35 ft. by 16 ft., and smelt 50 tons daily of hot ore, with the consumption of 1 ton of coal to 3.7 tons of ore.

I

The home of cupola smelting was Germany, where it has never ceased to make steady progress. In Mansfeld brick cupola furnaces are without a rival in size, equipment and performance. They are round stacks, designed on the model of iron blast furnaces, 29 ft. high, fed mechanically, and provided with stoves to heat the blast by the furnace gases. The low percentage of sulphur in the roasted ore is little more than enough to produce a matte of 40 to 45%, and therefore the escaping gases are better fitted than those of most copper cupola furnaces for burning in a stove. But as the slag carries on an average 46% of silica, it is only through the utmost skill that it can be made to run as low on an average as 0.3% in copper oxide. As the matte contains on an average 0.2% of silver, it is still treated by the Ziervogel wet method of extraction, the management dreading the loss which might occur in the Bessemer process of concentration, applied as preliminary to electrolytic separation. Blast furnaces of large size, built of brick, have been constructed for treating the richest and more silicious ores of Rio Tinto, and

the Rio Tinto Company has introduced converters at the mine. | the product to white metal. The slag is then poured and This method of extraction contrasts favourably in time with skimmed, the blast turned on and converter retilted. During the the leaching process, which is so slow that over 10,000,000 second blow the sulphur is rapidly oxidized, and the charge tons of ore are always under treatment on the immense leaching reduced to metal of 99% in from 30 to 40 minutes. Little or floors of the company's works in Spain. In the United States no slag results from the second blow. That from the first blow the cupola has undergone a radical modification in being built contains between 1% and 2% of copper, and is usually poured of water-jacketed sections. The first water-jacketed cupola from ladles operated by an electric crane into a reverberatory, which came into general use was a circular inverted cone, with or into the settling well of the cupola. The matte also, in all a slight taper, of 36 inches diameter at the tuyeres, and com- economically planned works, is conveyed, still molten, by posed of an outer and an inner metal shell, between which electric cranes from the furnace to the converters. When lead water circulated. As greater size has been demanded, oval and or zinc is not present in notable quantity, the loss of the precious rectangular furnaces-as large as 180 in. by 56 in. at the tuyeres- metals by volatilization is slight, but more than 5% of these have been built in sections of cast or sheet iron or steel. A single metals in the matte is prohibitive. Under favourable conditions section can be removed and replaced without entirely emptying in the larger works of the United States the cost of converting the stack, as a shell of congealed slag always coats the inner a 50% matte to metallic copper is generally understood to be surface of the jacket. The largest furnaces are those of the only about to of a cent per lb. of refined copper. Boston & Montana Company at Great Falls, Montana, which have put through 500 tons of charge daily, pouring their melted slag and matte into large wells of 10 ft. in diameter. A combined brick- and water-cooled furnace has been adopted by the Iron Mountain Company at Keswick, Cal., for matte concentration. In it the cooling is effected by water pipes, interposed horizontally between the layers of bricks. The Mt. Lyell smelting works in Tasmania, which are of special interest, will be referred to later. (See Pyritic Smelting below.)

Pyritic Smelting.-The heat generated by the oxidation of iron and sulphur has always been used to maintain combustion in the kilns or stalls for roasting pyrites. Pyritic smelting is a development of the Russian engineer Semenikov's treatment (proposed in 1866) of copper matte in a Bessemer converter. Since John Hollway's and other early experiments of Lawrence Austin and Robert Sticht, no serious attempts have been made to utilize the heat escaping from a converting vessel in smelting ore and matte either in the same apparatus or in a separate furnace. But considerable progress has been made in smelting highly sulphuretted ores by the heat of their own oxidizable constituents. At Tilt Cove, Newfoundland, the Cape Copper Company smelted copper ore, with just the proper proportion of sulphur, iron and silica, successfully without any fuel, when once the initial charge had been fused with coke. The furnaces used were of ordinary design and built of brick. Lump ore alone was fed, and the resulting matte showed a concentration of only 3 into 1. When, however, a hot blast is used on highly sulphuretted copper ores, a concentration of 8 of ore into 1 of matte is obtained, with a consumption of less than one-third the fuel which would be consumed in smelting the charge had the ore been previously calcined. A great impetus to pyritic smelting was given by the investigations of W. L. Austin, of Denver, Colorado, and both at Leadville and Silverton raw ores are successfully smelted with as low a fuel consumption as 3 of coke to 100 of charge.

Two types of pyritic smelting may be distinguished: one, in which the operation is solely sustained by the combustion of the sulphur in the ores, without the assistance of fuel or a hot blast; the other in which the operation is accelerated by fuel, or a hot blast, or both. The largest establishment in which

Concentrating Matte to Copper in the Bessemer Converter.-As soon as the pneumatic method of decarburizing pig iron was accepted as practicable, experiments were made with a view to Bessemerizing copper ores and mattes. One of the earliest and most exhaustive series of experiments was made on Rio Tinto ores at the John Brown works by John Hollway, with the aim of both smelting the ore and concentrating the matte in the same furnace, by the heat evolved through the oxidation of their sulphur and iron. Experiments along the same lines were made by Francis Bawden at Rio Tinto and Claude Vautin in Australia. The difficulty of effecting this double object in one operation was so great that in subsequent experiments the aim was merely to concentrate the matte to metallic copper in converters of the Bessemer type. The concentration was effected without any embarrassment till metallic copper commenced to separate and chill in the bottom tuyeres. To meet this obstacle P. Manhès proposed elevated side tuyeres, which could be kept clear by punching through gates in a wind box. His invention was adopted by the Vivians, at the Eguilles works near Sargues, Vaucluse, France, and at Leghorn in Italy. But the greatest expansion of this method has been in the United States, where more than 400,000,000 lb. of copper are annually made in Bessemer converters. Vessels of several designs are used-advantage is taken of the self-contained fuel is at the smelting some modelled exactly after steel converters, other barrelshaped, but all with side tuyeres elevated about 10 in. above the level of the bottom lining. Practice, however, in treating copper matte differs essentially from the treatment of pig iron, inasmuch as from 20 to 30% of iron must be eliminated as slag and an equivalent quantity of silica must be supplied. The only practical mode of doing this, as yet devised, is by lining the converter with a silicious mixture. This is so rapidly consumed that the converters must be cooled and partially relined after 3 to 6 charges, dependent on the iron contents of the matte. When available, a silicious rock containing copper or the precious metals is of course preferred to barren lining. The material for lining, and the frequent replacement thereof, constitute the principal expense of the method. The other items of cost are labour, the quantity of which depends on the mechanical appliances provided for handling the converter shells and inserting the lining; and the blast, which in barrel-shaped converters is low and in vertical converters is high, and which varies therefore from 3 to 15 lb to the square inch. The quantity of air consumed in a converter which will blow up about 35 tons of matte per day is about 3000 cub. ft. per minute. The operation of raising a charge of 50% matte to copper usually consists of two blows. The first blow occupies about 25 minutes, and oxidizes all but a small quantity of the iron and some of the sulphur, raising

works of the Mt. Lyell Company, Tasmania. There the blast is raised from 600° to 700° F. in stoves heated by extraneous fuel, and the raw ore smelted with only 3% of coke. The ore is a compact iron pyrites containing copper 2.5%, silver 3.83 oz., gold 0.139 oz. It is smelted raw with hot blast in cupola furnaces, the largest being 210 in. by 40 in. The resulting matte runs 25%. This is reconcentrated raw in hot blast cupolas to 55%, and blown directly into copper in converters. Thus these ores, as heavily charged with sulphur as those of the Rio Tinto, are speedily reduced by three operations and without roasting, with a saving of 97.6% of the copper, 93.2% of the silver and 93.6% of the gold.

Pyritic smelting has met with a varying economic success. According to Herbert Lang, its most prominent chance of success is in localities where fuel is dear, and the ores contain precious metals and sufficient sulphides and arsenides to render profitable dressing unnecessary.

The Nicholls and James Process.-Nicholls and James have applied, very ingeniously, well-known reactions to the refining of copper, raised to the grade of white metal. This process is practised by the Cape Copper and Elliot Metal Company. A portion of the white metal is calcined to such a degree of oxidation that when fused with the unroasted portion, the reaction between the oxygen in the roasted matte and the sulphur in the raw VII. 4 a

material liberates the metallic copper. The metal is so pure that it can be refined by a continuous operation in the same furnace. Wet Methods for Copper Extraction.-Wet methods are only employed for low grade ores (under favourable circumstances ore containing from to 1% of copper has admitted of economic treatment), and for gold and silver bearing metallurgical products.

The fundamental principle consists in getting the ore into a solution, from which the metal can be precipitated. The ores of any economic importance contain the copper either as oxide, carbonate, sulphate or sulphide. These compounds are got into solution either as chlorides or sulphates, and from either of these salts the metal can be readily obtained. Ores in which the copper is present as oxide or carbonate are soluble in sulphuric or hydrochloric acids, ferrous chloride, ferric sulphate, ammoniacal compounds and sodium thiosulphate. Of these solvents, only the first three are of economic importance. The choice of sulphuric or hydrochloric acid depends mainly upon the cost, both acting with about the same rapidity; thus if a Leblanc soda factory is near at hand, then hydrochloric acid would most certainly be employed. Ferrous chloride is not much used; the Douglas-Hunt process uses a mixture of salt and ferrous sulphate which involves the formation of ferrous chloride, and the new Douglas-Hunt process employs sulphuric acid in which ferrous chloride is added after leaching.

Sulphuric acid may be applied as such on the ores placed in lead, brick, or stone chambers; or as a mixture of sulphur dioxide, nitrous fumes (generated from Chile saltpetre and sulphuric acid), and steam, which permeates the ore resting on the false bottom of a brick chamber. When most of the copper has been converted into the sulphate, the ore is lixiviated. Hydrochloric acid is applied in the same way as sulphuric acid; it has certain advantages of which the most important is that it does not admit the formation of basic salts; its chief disadvantage is that it dissolves the oxides of iron, and accordingly must not be used for highly ferriferous ores. The solubility of copper carbonate in ferrous chloride solution was pointed out by Max Schaffner in 1862, and the subsequent recognition of the solubility of the oxide in the same solvent by James Douglas and Sterry Hunt resulted in the "Douglas-Hunt" process for the wet extraction of copper. Ferrous chloride decomposes the copper oxide and carbonate with the formation of cuprous and cupric chlorides (which remain in solution), and the precipitation of ferrous oxide, carbon dioxide being simultaneously liberated from the carbonate. In the original form of the Douglas-Hunt process, ferrous chloride was formed by the interaction of sodium chloride (common salt) with ferrous sulphate (green vitriol), the sodium sulphate formed at the same time being removed by crystallization. The ground ore was stirred with this solution at 70° C. in wooden tubs until all the copper was dissolved. The liquor was then filtered from the iron oxides, and the filtrate treated with scrap iron, which precipitated the copper and reformed ferrous chloride, which could be used in the first stage of the process. The advantage of this method rests chiefly on the small amount of iron required; but its disadvantages are that any silver present in the ores goes into solution, the formation of basic salts, and the difficulty of filtering from the iron oxides. A modification of the method was designed to remedy these defects. The ore is first treated with dilute sulphuric acid, and then ferrous or calcium chloride added, thus forming copper chlorides. If calcium chloride be used the precipitated calcium sulphate must be removed by filtration. Sulphur dioxide is then blown in, and the precipitate is treated with iron, which produces metallic copper, or milk of lime, which produces cuprous oxide. Hot air is blown into the filtrate, which contains ferrous or calcium chlorides, to expel the excess of sulphur dioxide, and the liquid can then be used again. In this process ("new Douglas-Hunt") there are no iron oxides formed, the silver is not dissolved, and the quantity of iron necessary is relatively small, since all the copper is in the cuprous condition. It is not used in the treatment of ores, but finds application in the case of calcined argentiferous lead and copper mattes.

The precipitation of the copper from the solution, in which it is present as sulphate, or as cuprous and cupric chlorides, is generally effected by metallic iron. Either wrought, pig, iron sponge or iron bars are employed, and it is important to notice that the form in which the copper is precipitated, and also the time taken for the separation, largely depend upon the condition in which the iron is applied. Spongy iron acts most rapidly, and after this follow iron turnings and then sheet clippings. Other precipitants such as sulphuretted hydrogen and solutions of sulphides, which precipitate the copper as sulphides, and milk of lime, which gives copper oxides, have not met with commercial success. When using iron as the precipitant, it is desirable that the solution should be as neutral as possible, and the quantity of ferric salts present should be reduced to a minimum; otherwise, a certain amount of iron would be used up by the free acid and in reducing the ferric salts. Ores in which the copper is present as sulphate are directly lixiviated and treated with iron. Mine waters generally contain the copper in this form, and it is extracted by conducting the waters along troughs fitted with iron gratings.

The wet extraction of metallic copper from ores in which it occurs as the sulphide, may be considered to involve the following operations: (1) conversion of the copper into a soluble form, (2) dissolving out the soluble copper salt, (3) the precipitation of the copper. Copper sulphide may be converted either into the sulphate, which is soluble in water; the oxide, soluble in sulphuric or hydrochloric acid; cupric chloride, soluble in water; or cuprous chloride, which is soluble in solutions of metallic chlorides.

The conversion into sulphate is generally effected by the oxidizing processes of weathering, calcination, heating with iron nitrate or ferric sulphate. It may also be accomplished by calcination with ferrous sulphate, or other easily decomposable sulphates, such as aluminium sulphate. Weathering is a very slow, and, therefore, an expensive process; moreover, the entire conversion is only accomplished after a number of years. Calcination is only advisable for ores which contain relatively much iron pyrites and little copper pyrites. Also, however slowly the calcination may be conducted, there is always more or less copper sulphide left unchanged, and some copper oxide formed. Calcination with ferrous sulphate converts all the copper sulphide into sulphate. Heap roasting has been successfully employed at Agordo, in the Venetian Alps, and at Majdanpek in Servia. Josef Perino's process, which consists in heating the ore with iron nitrate to 50°-150° C., is said to possess several advantages, but it has not been applied commercially. Ferric sulphate is only used as an auxiliary to the weathering process and in an electrolytic process.

The conversion of the sulphide into oxide is adopted where the Douglas-Hunt process is employed, or where hydrochloric or sulphuric acids are cheap. The calcination is effected in reverberatory furnaces, or in muffle furnaces, if the sulphur is to be recovered. Heap, stall or shaft furnace roasting is not very satisfactory, as it is very difficult to transform all the sulphide into oxide.

The conversion of copper sulphide into the chlorides may be accomplished by calcining with common salt, or by treating the ores with ferrous chloride and hydrochloric acid or with ferric chloride. The dry way is best; the wet way is only employed when fuel is very dear, or when it is absolutely necessary that no noxious vapours should escape into the atmosphere. The dry method consists in an oxidizing roasting of the ores, and a subsequent chloridizing roasting with either common salt or Abraumsalz in reverberatory or muffle furnaces. The bulk of the copper is thus transformed into cupric chloride, little cuprous chloride being obtained. This method had been long proposed by William Longmaid, Max Schaffner, Becchi and Haupt, but was only introduced into England by the labours of William Henderson, J. A. Phillips and others. The wet method is employed at Rio Tinto, the particular variant being known as the "Dötsch" process. This consists in stacking the broken ore in heaps and adding a mixture of sodium sulphate and ferric

chloride in the proportions necessary for the entire conversion of the iron into ferric sulphate. The heaps are moistened with ferric chloride solution, and the reaction is maintained by the liquid percolating through the heap. The liquid is run off at the base of the heaps into the precipitating tanks, where the copper is thrown down by means of metallic iron. The ferrous chloride formed at the same time is converted into ferric chloride which can be used to moisten the heaps. This conversion is effected by allowing the ferrous chloride liquors slowly to descend a tower, filled with pieces of wood, coke or quartz, where it meets an ascending current of chlorine.

66

[ocr errors]

The sulphate, oxide or chlorides, which are obtained from the sulphuretted ores, are lixiviated and the metal precipitated in the same manner as we have previously described. The metal so obtained is known as cement copper. If it contains more than 55% of copper it is directly refined, while if it contains a lower percentage it is smelted with matte or calcined copper pyrites. The chief impurities are basic salts of iron, free iron, graphite, and sometimes silica, antimony and iron arsenates. Washing removes some of these impurities, but some copper always passes into the slimes. If much carbonaceous matter be present (and this is generally so when iron sponge is used as the precipitant) the crude product is heated to redness in the air; this burns out the carbon, and, at the same time, oxidizes a little of the copper, which must be subsequently reduced. A similar operation is conducted when arsenic is present; basic-lined reverberatory furnaces have been used for

the same purpose.

Electrolytic Refining. The principles have long been known on which is based the electrolytic separation of copper from the certain elements which generally accompany it, whether these, like silver and gold, are valuable, or, like arsenic, antimony, bismuth, selenium and tellurium, are merely impurities. But it was not until the dynamo was improved as a machine for generating large quantities of electricity at a very low cost that the electrolysis of copper could be practised on a commercial scale. To-day, by reason of other uses to which electricity is applied, electrically deposited copper of high conductivity is in everincreasing demand, and commands a higher price than copper refined by fusion. This increase in value permits of copper with not over £2 or $10 worth of the precious metals being profitably subjected to electrolytic treatment. Thus many million ounces of silver and a great deal of gold are recovered which formerly were lost.

The earliest serious attempt to refine copper industrially was made by G. R. Elkington, whose first patent is dated 1865. He cast crude copper, as obtained from the ore, into plates which were used as anodes, sheets of electro-deposited copper forming the cathodes. Six anodes were suspended, alternately with four cathodes, in a saturated solution of copper sulphate in a cylindrical fire-clay trough, all the anodes being connected in one parallel group, and all the cathodes in another. A hundred or more jars were coupled in series, the cathodes of one to the anodes of the next, and were so arranged that with the aid of side-pipes with leaden connexions and india-rubber joints the electrolyte could, once daily, be made to circulate through them all from the top of one jar to the bottom of the next. The current from a Wilde's dynamo was passed, apparently with a current density of 5 or 6 amperes per sq. ft., until the anodes were too crippled for further use. The cathodes, when thick enough, were either cast and rolled or sent into the market direct. Silver and other insoluble impurities collected at the bottom of the trough up to the level of the lower side-tube, and were then run off through a plug in the bottom into settling tanks, from which they were removed for metallurgical treatment. The electrolyte was used until the accumulation of iron in it was too great, but was mixed from time to time with a little water acidulated by sulphuric acid. This process is of historic interest, and in principle it is identical with that now used. The modifications introduced have been chiefly in details, in order to economize materials and labour, to ensure purity of product, and to increase the rate of deposition.

The chemistry of the process has been studied by Martin Kiliani (Berg- und Hüttenmännische Zeitung, 1885, p. 249), who found that, using the (low) current-density of 1.8 ampere per sq. ft. of cathode, and an electrolyte containing 1 lb of copper sulphate and b of sulphuric acid per gallon, all the gold, platinum and silver present in the crude copper anode remain as metals, undissolved, in the anode slime or mud, and all the lead remains there as sulphate, formed by the action of the sulphuric acid (or SO, ions); he found also that arsenic forms arsenious oxide, which dissolves until the solution is saturated, and then remains in the slime, from which on long standing it gradually dissolves, after conversion by secondary reactions into arsenic oxide; antimony forms a basic sulphate which in part dissolves; bismuth partly dissolves and partly remains, but the dissolved portion tends slowly to separate out as a basic salt which becomes added to the slime; cuprous oxide, sulphide and selenides remain in the slime, and very slowly pass into solution by simple chemical action; tin partly dissolves (but in part separates again as basic salt) and partly remains as basic sulphate and stannic oxide; zinc, iron, nickel and cobalt pass into solution-more readily indeed than does the copper. Of the metals which dissolve, none (except bismuth, which is rarely present in any quantity) deposits at the anode so long as the solution retains its proper proportion of copper and acid, and the current-density is not too great. Neutral solutions are to be avoided because in them silver dissolves from the anode and, being more electro-negative than copper, is deposited at the cathode, while antimony and arsenic are also deposited, imparting a dark colour to the copper. Electrolytic copper should contain at least 99.92 % of metallic copper, the balance consisting mainly of oxygen with not more than 0.01% in all of lead, arsenic, antimony, bismuth and silver. Such a degree of purity is, however, unattainable unless the conditions of electrolysis gradually neutralized, partly by chemical action on certain conare rigidly adhered to. It should be observed that the free acid is stituents of the slime, partly by local action between different metals of the anode, both of which effect solution independently of the current, and partly by the peroxidation (or aëration) of ferrous sulphate formed from the iron in the anode. At the same time there is a gradual substitution of other metals for copper in the solution, because although copper plus other (more electro-positive) metals are constantly dissolving at the anode, only copper is deposited at the cathode. Hence the composition and acidity of the solution, on which so much depends, must be constantly watched. the current-density employed is well known. A very weak current The dependence of the mechanical qualities of the copper upon gives a pale and brittle deposit, but as the current-density is increased up to a certain point, the properties of the metal improve beyond this point they deteriorate, the colour becoming darker and the deposit less coherent, until at last it is dark brown and spongy or pulverulent. The presence of even a small proportion of hydrochloric acid imparts a brown tint to the deposit. Baron H. v. Hübl (Mittheil. des k. k. militär-geograph. Inst., 1886, vol. vi. p. 51) has found that with neutral solutions a 5% solution of copper sulphate obtained with a current-density of 28 amperes per sq. ft.; with gave no good result, while with a 20% solution the best deposit was solutions containing 2% of sulphuric acid, the 5% solution gave good deposits with current-densities of 4 to 7.5 amperes, and the current-densities for a pure acid solution at rest were: 20% solution with 11.5 to 37 amperes, per sq. ft. The maximum for 15% pure copper sulphate solutions 14 to 21 amperes, and for 20% solutions 18.5 to 28 amperes, per sq. ft.; but when the solutions were kept in gentle motion these maxima could be increased to 21-28 and 28-37 amperes per sq. ft. respectively. The necessity for adjusting the current-density to the composition and treatment of the electrolyte is thus apparent. The advantage of keeping the solution in motion is due partly to the renewal of solution thus effected in the neighbourhood of the electrodes, and partly to the neutralization of the tendency of liquids undergoing electrolysis to separate into layers, due to the different specific gravities of the solutions flowing from the opposing electrodes. Such an irregular distribution of the bath, with strong copper sulphate solution from the anode at the bottom and acid solution from the cathode at the top, not only current-distribution, but may lead to the current-density in the alters the conductivity in different strata and so causes irregular upper layers being too great for the proportion of copper there present. Irregular and defective deposits are therefore obtained. Provision for circulation of solution is made in the systems of copper-refining now in use. Henry Wilde, in 1875, in depositing the rollers during electrolysis, thereby renewing the surfaces of metal copper on iron printing-rollers, recognized this principle and rotated and liquid in mutual contact, and imparting sufficient motion to the solution to prevent stratification; as an alternative he imparted motion to the electrolyte by means of propeller blades. Other workers have followed more or less on the same lines; reference may be made to the patents of F. E. and A. S. Elmore, who sought to improve the character of the deposit by burnishing during electrolysis, of E. Dumoulin, and Sherard Cowper-Coles (Engineering Review, 1905, vol. xiii. p. 392), who prefers to rotate the cathode at a speed that maintains a peripheral velocity of at least 1000 ft. per minute. Certain other inventors have applied the same principle in a different way. H. Thofehrn in America and J. C. Graham in

« PreviousContinue »