Data Depth: Robust Multivariate Analysis, Computational Geometry, and Applications

Front Cover
Regina Y. Liu, Robert Joseph Serfling, Diane L. Souvaine
American Mathematical Soc. - 246 pages
The book is a collection of some of the research presented at the workshop of the same name held in May 2003 at Rutgers University. The workshop brought together researchers from two different communities: statisticians and specialists in computational geometry. The main idea unifying these two research areas turned out to be the notion of data depth, which is an important notion both in statistics and in the study of efficiency of algorithms used in computational geometry. Many ofthe articles in the book lay down the foundations for further collaboration and interdisciplinary research. Information for our distributors: Co-published with the Center for Discrete Mathematics and Theoretical Computer Science beginning with Volume 8. Volumes 1-7 were co-published with theAssociation for Computer Machinery (ACM).

From inside the book

What people are saying - Write a review

We haven't found any reviews in the usual places.

Selected pages


Depth functions in nonparametric multivariate inference
Rank tests for multivariate scale difference based on data depth
On scale curves for nonparametric description of dispersion
Data analysis and classification with the zonoid depth
On some parametric nonparametric and semiparametric discrimination rules
Regression depth and support vector machine
Spherical data depth and a multivariate median
Impartial trimmed means for functional data
Geometric measures of data depth
Computation of halfspace depth using simulated annealing
Primaldual algorithms for data depth
An improved definition analysis and efficiency for the finite sample case
Fast algorithms for frames and point depth
Statistical data depth and the graphics hardware

Depthbased classification for functional data

Common terms and phrases

Popular passages

Page 17 - The discussion on aviation safety in this paper reflects the views of the authors, who are solely responsible for the accuracy of the analysis results presented herein, and does not necessarily reflect the official view or policy of the FAA.
Page 189 - K. Miller, S. Ramaswami, P. Rousseeuw, T. Sellares, D. Souvaine, I. Streinu and A. Struyf, Fast implementation of depth contours using topological sweep, Proceedings of the Twelfth ACM-SIAM Symposium on Discrete Algorithms, Washington, DC (2001), 690-699.
Page 157 - S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set of points in linear time.
Page 34 - R. Liu, J. Parelius, and K. Singh, Multivariate analysis by data depth: descriptive statistics, graphics and inference (with discussions), Annals of Statistics 27 (1999), 783-858.
Page 188 - A. Marzetta, K. Fukuda and J. Nievergelt, The parallel search bench ZRAM and its applications, Annals of Operations Research (1999), 45-63.
Page 34 - Structural properties and convergence results for contours of sample statistical depth functions.
Page 168 - I. Ruts, and PJ Rousseeuw, Computing depth contours of bivariate point clouds, Computational Statistics and Data Analysis 23 (1996), 153-168.
Page 118 - Computing depth contours of bivariate point clouds. Computational Statistics and Data Analysis, 23, pp. 153-168. Struyf, A. and Rousseeuw, PJ (2000). High-dimensional computation of the deepest location. Computational Statistics and Data Analysis, to appear. Tukey, JW (1975), Mathematics and the picturing of data.
Page 85 - Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2002.
Page 34 - On a Notion of Data Depth Based on Random Simplices.

Bibliographic information