
n


D

h

m = 30

m = 50

m = 100

m = 200


3

0.05

1957

2040

2091

2040

3

0.1

489

475

412

288

3

0.15

189

161

105

69

4

0.05

1923

2051

2137

2122

4

0.1

490

476

417

297

 Here, ${\overrightarrow{\theta}}_{1}={({\theta}_{1,1},\dots ,{\theta}_{1,m})}^{\prime}$, let θ_{1,j}∼U(0.4,0.49),j=1,…,m; for a specified scalar value h, let ${\overrightarrow{h}}_{1},{\overrightarrow{h}}_{2},{\overrightarrow{h}}_{3}$ be such that their components h_{i,j}∼U(h−0.002,h+0.002), j=1,…,m; and let ${\overrightarrow{\theta}}_{i+1}={\overrightarrow{\theta}}_{i}{\overrightarrow{h}}_{i},i=1,2,3$; m is the number of independent SNPs, α=0.01 is the significant level for Wald tests; and ρ=1 is the percentage of the significant SNPs.