Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Books Books 11 - 20 of 29 on Figure 1, includes an input layer, one or more hidden layers, and an output layer.....
" Figure 1, includes an input layer, one or more hidden layers, and an output layer. The nodes in each layer are connected to each node in the adjacent layer. "
Data Mining, Southeast Asia Edition - Page 328
by Jiawei Han, Jian Pei, Micheline Kamber - 2006 - 800 pages
Limited preview - About this book

Artificial Intelligence Systems for Water Treatment Plant Optimization

Christopher W. Baxter - 2001 - 141 pages
...name implies, the neurons in multi-layer perceptron networks are organized into a number of layers: an input layer, one or more hidden layers, and an output layer. All neurons are connected to neurons in adjoining layers and communicate with each other via connection...
Limited preview - About this book

Novel Processes and Control Technologies in the Food Industry

Faruk Bozoglu, T. Faruk Bozoğlu, Tibor DeŠk, Bibek Ray - 2001 - 246 pages
...feedforward, also called multilayer perceptrons with the architecture of interconnected neurons in an input layer, one or more ..hidden" layers, and an output layer (see Fig. 5). Number of processing units corresponds to the desired model inputs and outputs. Optimal...
Limited preview - About this book

Neuro-Fuzzy Architectures and Hybrid Learning

Danuta Rutkowska - 2001 - 288 pages
...as a generalization of the single-layer perceptron, by connecting the single layers. Typically, the network consists of an input layer, one or more hidden layers, and an output layer. The input signal propagates through the network in a forward direction. The first hidden layer is fed...
Limited preview - About this book

Intelligent Applications in a Material World Select Papers from IPMM-2001

John A. Meech - 2002 - 952 pages
...multi-layer perceptron - MLP) network is the most commonly used neural network for modelling. A MLP typically consists of an input layer, one or more hidden layers, and an output layer [8]. Many workers have demonstrated the power of the MLP network and research indicates that it is...
Limited preview - About this book

Space Structures 5, Volume 1

G. A. R. Parke, P. Disney - 2002 - 1613 pages
...learning is carried out when a set of training patterns is propagated through a network consisting of an input layer, one or more hidden layers and an output layer. Each layer has its corresponding units and weight connections. The topology of a BP network is illustrated...
Limited preview - About this book

Neural Networks for Instrumentation, Measurement and Related Industrial ...

Sergey Ablameyko - 2003 - 329 pages
...MLP is a feed-forward network built up of perceptron -type neurons, arranged in layers. An MLP has an input layer, one or more hidden layers and an output layer. 1n Figure 5 a single hidden layer multi-input - multi-output MLP is shown. An MLP is a fully connected...
Limited preview - About this book

Structural Health Monitoring and Intelligent Infrastructure ..., Volume 1

Zhishen Wu, Masato Abe - 2003 - 1395 pages
...network model, because of its simplicity. The architecture of BP networks, shown in Fig. 1, includes an input layer, one or more hidden layers and an output layer. Every node in each layer is connected to every node in the adjacent layer. Notably, HechtNielsen (1989)...
Limited preview - About this book

On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE ..., Part 2

Zahir Tari - 2007 - 1860 pages
...is developed with multi-layer perceptron (MLP). This is a unidirectional model of neural net made up of an input layer, one or more hidden layers and an output layer. The activation function of the neurons belonging to the hidden layers must be nonlinear so that the...
Limited preview - About this book

Pattern Recognition for Medical Imaging

Anke Meyer-Bšse - 2004 - 386 pages
...applications are successful implementations of MLPs. The architecture of the MLP is completely defined by an input layer, one or more hidden layers, and an output layer. Each layer consists of at least one neuron. The input vector is processed by the MLP in a forward direction,...
Limited preview - About this book

New Developments in Dam Engineering: Proceedings of the 4th International ...

Martin Wieland, Qingwen Ren, John S.Y. Tan - 2014 - 1240 pages
...learning model, due to its simplicity. The architecture of BP networks, depicted in Figure 1, includes an input layer, one or more hidden layers, and an output layer. The nodes in each layer are connected to each node in the adjacent layer. Notably, Hecht-Nielsen proved...
Limited preview - About this book




  1. My library
  2. Help
  3. Advanced Book Search